Title :
A rank-two divide and conquer method for the symmetric tridiagonal eigenproblem
Author_Institution :
Inst. fuer Wissenschaftliches Rechnen, Zurich, Switzerland
Abstract :
A rank-two divide and conquer algorithm is developed for calculating the eigensystem of a symmetric tridiagonal matrix. This algorithm is compared to the LAPACK recommended path for this problem and the rank-one divide and conquer algorithm. The timing results on a Sequent Symmetry S81b show that this algorithm has potential as a parallel alternative to the QR algorithm
Keywords :
eigenvalues and eigenfunctions; mathematics computing; matrix algebra; LAPACK; QR algorithm; Sequent Symmetry S81b; rank-two divide and conquer method; symmetric tridiagonal eigenproblem; Concurrent computing; Eigenvalues and eigenfunctions; Symmetric matrices;
Conference_Titel :
Frontiers of Massively Parallel Computation, 1992., Fourth Symposium on the
Conference_Location :
McLean, VA
Print_ISBN :
0-8186-2772-7
DOI :
10.1109/FMPC.1992.234887