DocumentCode
3301487
Title
Segmentation of medical image based on mean shift and deterministic annealing EM algorithm
Author
Lee, Myung-Eun ; Kim, Soo-Hyung ; Cho, Wan-Hyun ; Zhao, Xin
Author_Institution
Chonnam Nat. Univ., Gwangju
fYear
2008
fDate
March 31 2008-April 4 2008
Firstpage
937
Lastpage
938
Abstract
In this paper, we use the mean shift procedure to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the Gaussian mixture model to represent the probability distribution of feature vectors. A deterministic annealing expectation maximization algorithm is used to estimate the parameters of the GMM. The experimental results show that the mean shift part of the proposed algorithm is efficient to determine the number of components and modes of each component in mixture models. And it shows that the DAEM part provides a global optimal solution for the parameter estimation in a mixture model.
Keywords
Gaussian processes; expectation-maximisation algorithm; image segmentation; medical image processing; parameter estimation; Gaussian mixture model; deterministic annealing expectation maximization; mean shift expectation maximization; medical image segmentation; parameter estimation; Annealing; Biomedical imaging; Clustering algorithms; Computer science; Gaussian distribution; Image segmentation; Kernel; Parameter estimation; Probability distribution; Statistics;
fLanguage
English
Publisher
ieee
Conference_Titel
Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International Conference on
Conference_Location
Doha
Print_ISBN
978-1-4244-1967-8
Electronic_ISBN
978-1-4244-1968-5
Type
conf
DOI
10.1109/AICCSA.2008.4493653
Filename
4493653
Link To Document