• DocumentCode
    3301487
  • Title

    Segmentation of medical image based on mean shift and deterministic annealing EM algorithm

  • Author

    Lee, Myung-Eun ; Kim, Soo-Hyung ; Cho, Wan-Hyun ; Zhao, Xin

  • Author_Institution
    Chonnam Nat. Univ., Gwangju
  • fYear
    2008
  • fDate
    March 31 2008-April 4 2008
  • Firstpage
    937
  • Lastpage
    938
  • Abstract
    In this paper, we use the mean shift procedure to determine the number of components in a mixture model and to detect their modes of each mixture component. Next, we have adopted the Gaussian mixture model to represent the probability distribution of feature vectors. A deterministic annealing expectation maximization algorithm is used to estimate the parameters of the GMM. The experimental results show that the mean shift part of the proposed algorithm is efficient to determine the number of components and modes of each component in mixture models. And it shows that the DAEM part provides a global optimal solution for the parameter estimation in a mixture model.
  • Keywords
    Gaussian processes; expectation-maximisation algorithm; image segmentation; medical image processing; parameter estimation; Gaussian mixture model; deterministic annealing expectation maximization; mean shift expectation maximization; medical image segmentation; parameter estimation; Annealing; Biomedical imaging; Clustering algorithms; Computer science; Gaussian distribution; Image segmentation; Kernel; Parameter estimation; Probability distribution; Statistics;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Systems and Applications, 2008. AICCSA 2008. IEEE/ACS International Conference on
  • Conference_Location
    Doha
  • Print_ISBN
    978-1-4244-1967-8
  • Electronic_ISBN
    978-1-4244-1968-5
  • Type

    conf

  • DOI
    10.1109/AICCSA.2008.4493653
  • Filename
    4493653