DocumentCode :
3302822
Title :
Block-diagonal representations for covariance-based Anomalous change detectors
Author :
Matsekh, Anna ; Theiler, James
Author_Institution :
Space & Remote Sensing Sci., Los Alamos Nat. Lab., Los Alamos, NM, USA
fYear :
2010
fDate :
25-30 July 2010
Firstpage :
3202
Lastpage :
3205
Abstract :
We use singular vectors of the whitened cross-covariance matrix of two hyper-spectral images and the Golub-Kahan permutations in order to obtain equivalent tridiagonal representations of the coefficient matrices for a family of covariance-based quadratic Anomalous Change Detection (ACD) algorithms. Due to the nature of the problem these tridiagonal matrices have block-diagonal structure, which we exploit to derive analytical expressions for the eigenvalues of the coefficient matrices in terms of the singular values of the whitened cross-covariance matrix. The block-diagonal structure of the matrices of the RX, Chronochrome, symmetrized Chronochrome, Whitened Total Least Squares, Hyperbolic and Subpixel Hyperbolic Anomalous change detectors are revealed by the white singular value decomposition and Golub-Kahan transformations. Similarities and differences in the properties of these change detectors are illuminated by their eigenvalue spectra.
Keywords :
covariance matrices; eigenvalues and eigenfunctions; geophysical image processing; image representation; singular value decomposition; Golub-Kahan permutation; block-diagonal representation; covariance-based quadratic anomalous change detection algorithm; eigenvalue spectra; equivalent tridiagonal representation; hyper-spectral images; singular vector; subpixel hyperbolic anomalous change detector; symmetrized chronochrome; tridiagonal matrix; white singular value decomposition; whitened cross-covariance matrix; whitened total least squares; Covariance matrix; Detectors; Eigenvalues and eigenfunctions; Matrix decomposition; Pixel; Remote sensing; Symmetric matrices; anomalous change detection; block-diagonal matrix; change detection; eigenvalues; hyper-spectral; tridiagonal matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location :
Honolulu, HI
ISSN :
2153-6996
Print_ISBN :
978-1-4244-9565-8
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2010.5649684
Filename :
5649684
Link To Document :
بازگشت