Title :
On the Class Imbalance Problem
Author :
Guo, Xinjian ; Yin, Yilong ; Dong, Cailing ; Yang, Gongping ; Zhou, Guangtong
Author_Institution :
Sch. of Comput. Sci. & Technol., Shandong Univ., Jinan
Abstract :
The class imbalance problem has been recognized in many practical domains and a hot topic of machine learning in recent years. In such a problem, almost all the examples are labeled as one class, while far fewer examples are labeled as the other class, usually the more important class. In this case, standard machine learning algorithms tend to be overwhelmed by the majority class and ignore the minority class since traditional classifiers seeking an accurate performance over a full range of instances. This paper reviewed academic activities special for the class imbalance problem firstly. Then investigated various remedies in four different levels according to learning phases. Following surveying evaluation metrics and some other related factors, this paper showed some future directions at last.
Keywords :
learning (artificial intelligence); class imbalance problem; evaluation metrics; machine learning; Biomedical monitoring; Computer science; Condition monitoring; Data mining; Diseases; Fault detection; Intrusion detection; Machine learning; Machine learning algorithms; Radar detection;
Conference_Titel :
Natural Computation, 2008. ICNC '08. Fourth International Conference on
Conference_Location :
Jinan
Print_ISBN :
978-0-7695-3304-9
DOI :
10.1109/ICNC.2008.871