• DocumentCode
    3310344
  • Title

    Composite adaptation for neural network-based controllers

  • Author

    Patre, Parag M. ; Bhasin, Shubhendu ; Wilcox, Zachary D. ; Dixon, Warren E.

  • Author_Institution
    Dept. of Mech. & Aerosp. Eng., Univ. of Florida, Gainesville, FL, USA
  • fYear
    2009
  • fDate
    15-18 Dec. 2009
  • Firstpage
    6726
  • Lastpage
    6731
  • Abstract
    This paper presents a novel approach to design a composite adaptation law for neural networks that uses both the system tracking errors and a prediction error containing parametric information by devising an innovative swapping procedure that uses the recently developed Robust Integral of the Sign of the Error (RISE) feedback method. Semi-global asymptotic tracking is proven for an Euler-Lagrange system.
  • Keywords
    Lyapunov methods; adaptive systems; asymptotic stability; feedback; neurocontrollers; robust control; Euler-Lagrange system; composite adaptation; neural network-based controller; parametric information; prediction error; robust integral of the sign of the error feedback method; semiglobal asymptotic tracking; swapping procedure; system tracking error; Adaptive control; Asymptotic stability; Control systems; Error correction; Feedback; Neural networks; Neurofeedback; Robust control; Sliding mode control; Uncertainty;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on
  • Conference_Location
    Shanghai
  • ISSN
    0191-2216
  • Print_ISBN
    978-1-4244-3871-6
  • Electronic_ISBN
    0191-2216
  • Type

    conf

  • DOI
    10.1109/CDC.2009.5400453
  • Filename
    5400453