DocumentCode :
3314011
Title :
Gradient-based iterative parameter estimation for Box-Jenkins systems with finite measurement data
Author :
Wang, Dongqing ; Dai, Jiyang ; Ding, Feng
Author_Institution :
Coll. of Autom. Eng., Qingdao Univ., Qingdao, China
fYear :
2009
fDate :
15-18 Dec. 2009
Firstpage :
239
Lastpage :
243
Abstract :
A gradient-based iterative (GI) identification algorithm is developed for Box-Jenkins systems (or models) with finite measurement input-output data. Compared with the pseudo-linear regression stochastic gradient approach, the proposed algorithm updates the parameter estimation using all the available data at each iterative computation (at each iteration), and thus can produce highly accurate parameter estimation. An example is included.
Keywords :
gradient methods; nonlinear control systems; parameter estimation; regression analysis; stochastic systems; Box-Jenkins systems; finite measurement input-output data; gradient-based iterative identification; parameter estimation; pseudo-linear regression stochastic gradient approach; Automation; Educational institutions; Helium; Iterative algorithms; Iterative methods; Parameter estimation; Predictive models; Signal processing algorithms; Stochastic processes; Stochastic systems; Box-Jenkins models; Signal processing; identification; iteration; parameter estimation; stochastic gradient;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on
Conference_Location :
Shanghai
ISSN :
0191-2216
Print_ISBN :
978-1-4244-3871-6
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2009.5400671
Filename :
5400671
Link To Document :
بازگشت