DocumentCode :
3315030
Title :
Using an information filter to speed computation of sparse parameter estimates
Author :
Blackhall, Lachlan ; Rotkowitz, Michael
Author_Institution :
Res. Sch. of Inf. Sci. & Eng., Australian Nat. Univ., Canberra, ACT, Australia
fYear :
2009
fDate :
15-18 Dec. 2009
Firstpage :
7238
Lastpage :
7243
Abstract :
This paper discusses the development of a recursive estimator which systematically arrives at sparse parameter estimates. Prior work achieved this by utilizing a Gaussian sum filter. This paper shows the relationship between the implementation using a Gaussian sum filter, where the mean and covariance of each component is propagated, and the equivalent representation using an information filter. We see that the information filter representation requires only a single information filter to be updated for each new measurement instead of the exponential number of measurement updates that were required when using the Gaussian sum filter. We thus see that using the information filter provides computational benefits when recursively estimating sparse parameters, reducing running time as well as data storage.
Keywords :
Gaussian distribution; filtering theory; parameter estimation; Gaussian sum filter; information filter; recursive estimator; sparse parameter estimation; Covariance matrix; Gaussian distribution; Information filtering; Information filters; Memory; Parameter estimation; Probability density function; Random variables; Recursive estimation; Sparse matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on
Conference_Location :
Shanghai
ISSN :
0191-2216
Print_ISBN :
978-1-4244-3871-6
Electronic_ISBN :
0191-2216
Type :
conf
DOI :
10.1109/CDC.2009.5400727
Filename :
5400727
Link To Document :
بازگشت