DocumentCode :
3319570
Title :
VLSI design of large-scale soft-output MIMO detection using conjugate gradients
Author :
Bei Yin ; Wu, Michael ; Cavallaro, Joseph R. ; Studer, Christoph
Author_Institution :
Dept. of ECE, Rice Univ., Houston, TX, USA
fYear :
2015
fDate :
24-27 May 2015
Firstpage :
1498
Lastpage :
1501
Abstract :
We propose an FPGA design for soft-output data detection in orthogonal frequency-division multiplexing (OFDM)-based large-scale (multi-user) MIMO systems. To reduce the high computational complexity of data detection, our design uses a modified version of the conjugate gradient least square (CGLS) algorithm. In contrast to existing linear detection algorithms for massive MIMO systems, our method avoids two of the most complex tasks, namely Gram-matrix computation and matrix inversion, while still being able to compute soft-outputs. Our architecture uses an array of reconfigurable processing elements to compute the CGLS algorithm in a hardware-efficient manner. Implementation results on Xilinx Virtex-7 FPGA for a 128 antenna, 8 user large-scale MIMO system show that our design only uses 70% of the area-delay product of the competitive method, while exhibiting superior error-rate performance.
Keywords :
MIMO communication; conjugate gradient methods; field programmable gate arrays; integrated circuit design; least squares approximations; signal detection; FPGA design; VLSI design; Xilinx Virtex-7 FPGA; conjugate gradient least square algorithm; hardware efficient algoritm; large scale soft output MIMO detection; massive MIMO systems; multiuser MIMO system; orthogonal frequency division multiplexing; soft output data detection; Antennas; Approximation methods; Arrays; Detectors; Field programmable gate arrays; MIMO; Signal to noise ratio;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems (ISCAS), 2015 IEEE International Symposium on
Conference_Location :
Lisbon
Type :
conf
DOI :
10.1109/ISCAS.2015.7168929
Filename :
7168929
Link To Document :
بازگشت