DocumentCode :
3326026
Title :
Limits of ultra-low dose CT attenuation correction for PET/CT
Author :
Xia, Ting ; Alessio, Adam M. ; Kinahan, Paul E.
Author_Institution :
Depts. of Bioeng. & Radiol., Univ. of Washington, Seattle, WA, USA
fYear :
2009
fDate :
Oct. 24 2009-Nov. 1 2009
Firstpage :
3074
Lastpage :
3079
Abstract :
We present an analysis of the effects of ultra-low dose X-ray computerized tomography (CT) based attenuation correction for positron emission tomography (PET). By ultra low dose we mean less than approximately 5 mAs or 0.5 mSv total effective whole body dose. The motivation is the increased interest in using respiratory motion information acquired during the CT scan for both phase-matched CT-based attenuation correction and for motion estimation. Since longer duration CT scans are desired, radiation dose to the patient can be a limiting factor. In this study we evaluate the impact of reducing photon flux rates in the CT data on the reconstructed PET image by using the CATSIM simulation tool for the CT component and the ASIM simulation tool for the PET component. The CT simulation includes effects of the X-ray tube spectra, beam conditioning, bowtie filter, detector noise, and bean hardening correction. The PET simulation includes the effect of attenuation and photon counting. Noise and bias in the PET image were evaluated from multiple realizations of test objects. We show that techniques can be used to significantly reduce the mAs needed for CT based attenuation correction if the CT is not used for diagnostic purposes. The limiting factor, however, is not the noise in the CT image but rather the bias introduced by CT sinogram elements with no detected flux. These results constrain the methods that can be used to lower CT dose in a manner suitable for attenuation correction of PET data. We conclude that ultra-low-dose CT for attenuation correction of PET data is feasible with current PET/CT scanners.
Keywords :
computerised tomography; dosimetry; image reconstruction; medical image processing; motion estimation; positron emission tomography; ASIM simulation tool; CATSIM simulation tool; CT sinogram elements; X-ray computerized tomography; X-ray tube spectra; beam conditioning; bean hardening correction; bowtie filter; detector noise; motion estimation; photon counting; photon flux rates; positron emission tomography; radiation dose; reconstructed PET image; respiratory motion information; ultralow dose CT attenuation correction; Attenuation; Computed tomography; Filters; Frequency conversion; Image reconstruction; Motion estimation; Positron emission tomography; Whole-body PET; X-ray detection; X-ray imaging;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nuclear Science Symposium Conference Record (NSS/MIC), 2009 IEEE
Conference_Location :
Orlando, FL
ISSN :
1095-7863
Print_ISBN :
978-1-4244-3961-4
Electronic_ISBN :
1095-7863
Type :
conf
DOI :
10.1109/NSSMIC.2009.5401665
Filename :
5401665
Link To Document :
بازگشت