DocumentCode :
3326049
Title :
Automatic target recognition of multiple targets from two classes with varying velocities using correlation filters
Author :
Rodriguez, Andres ; Kumar, B. V K Vijaya
Author_Institution :
Electr. & Comput. Eng. Dept., Carnegie Mellon Univ., Pittsburgh, PA, USA
fYear :
2010
fDate :
26-29 Sept. 2010
Firstpage :
2781
Lastpage :
2784
Abstract :
Correlation filters (CFs) can detect multiple targets in one scene making them well-suited for automatic target recognition (ATR) applications. We present a method to efficiently compute the Quadratic CF (QCF) capable of detecting multiple targets from two classes. We use a Kalman filter framework to combine information from successive correlation outputs in a probabilistic way integrating the ATR tasks of detection, recognition, and tracking.
Keywords :
Kalman filters; correlation methods; object detection; object recognition; probability; quadratic programming; target tracking; Kalman filter; automatic target recognition; correlation filters; probability; quadratic CF; target detection; target tracking; Correlation; Noise; Target recognition; Target tracking; Training; Uncertainty; Videos;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1522-4880
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2010.5651040
Filename :
5651040
Link To Document :
بازگشت