DocumentCode :
3327776
Title :
Expected likelihood estimation: Asymptotic properties for "stochastic" complex Gaussian models
Author :
Abramovich, Yuri I. ; Johnson, Ben A.
Author_Institution :
ISR Div., Defence Sci. & Technol. Organ., Edinburgh, SA
fYear :
2007
fDate :
12-14 Dec. 2007
Firstpage :
33
Lastpage :
36
Abstract :
Expected likelihood estimation allows for the "quality assessment" of potential parameter estimates based on the likelihood ratio (LR) of the covariance matrix model constructed with parameter estimates. A solution is considered acceptable and further iterative refinement of the estimation process is terminated when the observed LR is statistically as good as the LR of the unknown true solution. We derive the asymptotic performance of expected likelihood and show it has a larger average error than the Cramer-Rao bound and is therefore not technically efficient. However, the degradation in the error is fixed, relatively small, and a function of the dimension of the data vector M, so expected likelihood can be used to impose useful statistical bounds on the likelihood function (LF) value.
Keywords :
Gaussian processes; covariance matrices; estimation theory; parameter estimation; asymptotic property; covariance matrix; expected likelihood estimation; iterative refinement; potential parameter estimation; quality assessment; stochastic complex Gaussian model; Australia; Covariance matrix; Degradation; Gaussian distribution; Maximum likelihood estimation; Parameter estimation; Quality assessment; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International Workshop on
Conference_Location :
St. Thomas, VI
Print_ISBN :
978-1-4244-1713-1
Electronic_ISBN :
978-1-4244-1714-8
Type :
conf
DOI :
10.1109/CAMSAP.2007.4497958
Filename :
4497958
Link To Document :
بازگشت