DocumentCode :
3328585
Title :
Bounded Error Estimation: A Chebyshev Center Approach
Author :
Eldar, Yonina C. ; Beck, Amir ; Teboulle, Marc
Author_Institution :
Technion-Israel Inst. of Technol., Haifa
fYear :
2007
fDate :
12-14 Dec. 2007
Firstpage :
205
Lastpage :
208
Abstract :
We develop a nonlinear minimax estimator for the classical linear regression model assuming that the true parameter vector lies in an intersection of ellipsoids. We seek an estimate that minimizes the worst-case estimation error over the given parameter set. Since this problem is intractable, we approximate it using semidefinite relaxation, and refer to the resulting estimate as the relaxed Chebyshev center (RCC). We then demonstrate through simulations that the RCC can significantly improve the estimation error over the conventional constrained least-squares method.
Keywords :
Chebyshev approximation; error analysis; least squares approximations; minimax techniques; nonlinear estimation; regression analysis; relaxation theory; Chebyshev center approach; bounded error estimation; classical linear regression model; constrained least-squares method; nonlinear minimax estimator; relaxed Chebyshev center; semidefinite relaxation; worst-case estimation error; Chebyshev approximation; Covariance matrix; Ellipsoids; Error analysis; Estimation error; Least squares approximation; Minimax techniques; Sociotechnical systems; Solid modeling; Vectors; Estimation; minimax; regression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International Workshop on
Conference_Location :
St. Thomas, VI
Print_ISBN :
978-1-4244-1713-1
Electronic_ISBN :
978-1-4244-1714-8
Type :
conf
DOI :
10.1109/CAMSAP.2007.4498001
Filename :
4498001
Link To Document :
بازگشت