Title :
On the 2×2 matrix multiplication
Author :
Bshouty, Nader H.
Author_Institution :
Dept. of Comput. Sci., Calgary Univ., Alta., Canada
Abstract :
In SIAM J. Comput., vol.5, p.187-203 (1976), R.L. Probert proved that 15 additive operations are necessary and sufficient to multiply two 2×2 matrices over the binary field by a bilinear algorithm using seven non-scalar multiplications. The author proves this result for arbitrary field. The algorithm of Winograd is used to classify all such algorithms (S. Winograd, 1971)
Keywords :
computational complexity; matrix algebra; 2×2 matrices; Winograd; additive operations; arbitrary field; bilinear algorithm; binary field; non-scalar multiplications;
Conference_Titel :
Applied Computing, 1991., [Proceedings of the 1991] Symposium on
Conference_Location :
Kansas City, MO
Print_ISBN :
0-8186-2136-2
DOI :
10.1109/SOAC.1991.143920