Title : 
On the 2×2 matrix multiplication
         
        
            Author : 
Bshouty, Nader H.
         
        
            Author_Institution : 
Dept. of Comput. Sci., Calgary Univ., Alta., Canada
         
        
        
        
        
        
            Abstract : 
In SIAM J. Comput., vol.5, p.187-203 (1976), R.L. Probert proved that 15 additive operations are necessary and sufficient to multiply two 2×2 matrices over the binary field by a bilinear algorithm using seven non-scalar multiplications. The author proves this result for arbitrary field. The algorithm of Winograd is used to classify all such algorithms (S. Winograd, 1971)
         
        
            Keywords : 
computational complexity; matrix algebra; 2×2 matrices; Winograd; additive operations; arbitrary field; bilinear algorithm; binary field; non-scalar multiplications;
         
        
        
        
            Conference_Titel : 
Applied Computing, 1991., [Proceedings of the 1991] Symposium on
         
        
            Conference_Location : 
Kansas City, MO
         
        
            Print_ISBN : 
0-8186-2136-2
         
        
        
            DOI : 
10.1109/SOAC.1991.143920