DocumentCode :
3330524
Title :
Derivation of a discrete Fourier transform using higher order integration and prime factorization for application to conjugate gradient FFT methods (EM wave scattering)
Author :
Peters, T.J. ; Volakis, J.L.
Author_Institution :
Dept. of Electr. & Comput. Eng., Michigan Univ., Ann Arbor, MI, USA
fYear :
1988
fDate :
6-10 June 1988
Firstpage :
96
Abstract :
It is shown how a conjugate gradient-fast Fourier transform (CG-FFT) method may be improved by a faster and/or more accurate specialized FFT using a piecewise Lagrange polynomial expansion. The formulas presented allow use of a prime-factor FFT and are more accurate than using a standard FFT by itself.<>
Keywords :
electromagnetic wave scattering; fast Fourier transforms; polynomials; conjugate gradient FFT methods; discrete Fourier transform; higher order integration; piecewise Lagrange polynomial expansion; prime factorisation; Application software; Computer science; Discrete Fourier transforms; Fourier transforms; Laboratories; Lagrangian functions; Optimization methods; Packaging; Polynomials; Scattering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Antennas and Propagation Society International Symposium, 1988. AP-S. Digest
Conference_Location :
Syracuse, NY, USA
Type :
conf
DOI :
10.1109/APS.1988.93998
Filename :
93998
Link To Document :
بازگشت