DocumentCode :
3331320
Title :
Adaptive memory power management techniques for HPC workloads
Author :
Elangovan, Karthik ; Rodero, Ivan ; Parashar, Manish ; Guim, Francesc ; Hernandez, Isaac
Author_Institution :
Center for Autonomic Comput., Rutgers Univ., Piscataway, NJ, USA
fYear :
2011
fDate :
18-21 Dec. 2011
Firstpage :
1
Lastpage :
11
Abstract :
The memory subsystem is responsible for a large fraction of the energy consumed by compute nodes in High Performance Computing (HPC) systems. The rapid increase in the number of cores has been accompanied by a corresponding increase in the DRAM capacity and bandwidth, and as a result, the memory system consumes a significant amount of the power budget available to a compute node. Consequently, there is a broad research effort focused on power management techniques using DRAM low-power modes. However, memory power management continues to present many challenges. In this paper, we study the potential of Dynamic Voltage and Frequency Scaling (DVFS) of the memory subsystems, and consider the ability to select different frequencies for different memory channels. Our approach is based on tuning voltage and frequency dynamically to maximize the energy savings while maintaining performance degradation within tolerable limits. We assume that HPC applications do not demand maximum bandwidth throughout the entire period of execution. We can use these low memory demand intervals to tune down the frequency and, as a result, applications can tolerate a reduction in bandwidth to save energy. In this paper, we study application channel access patterns, and use these patterns to determine potential additional energy savings that can be achieved by accordingly controlling the channels independently. We then evaluate the proposed DVFS algorithm using a novel hybrid evaluation methodology that includes simulation as well as executions on real hardware. Our results demonstrate the large potential of adaptive memory power management techniques based on DVFS for HPC workloads.
Keywords :
DRAM chips; energy consumption; power aware computing; storage management; DRAM capacity; DRAM low-power mode; adaptive memory power management technique; application channel access patterns; dynamic voltage scaling; energy consumption; frequency scaling; high performance computing system; hybrid evaluation methodology; memory subsystem; memory system; performance degradation maintenance; tuning voltage; Arrays; Bandwidth; Energy consumption; Hardware; Memory management; Program processors; Random access memory;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
High Performance Computing (HiPC), 2011 18th International Conference on
Conference_Location :
Bangalore
Print_ISBN :
978-1-4577-1951-6
Electronic_ISBN :
978-1-4577-1949-3
Type :
conf
DOI :
10.1109/HiPC.2011.6152740
Filename :
6152740
Link To Document :
بازگشت