DocumentCode :
3331368
Title :
Joint diagonalization via subspace fitting techniques
Author :
Van der Veen, Alle-Jan
Author_Institution :
Dept. of Electr. Eng., Delft Univ. of Technol., Netherlands
Volume :
5
fYear :
2001
fDate :
2001
Firstpage :
2773
Abstract :
Joint diagonalization problems of Hermitian or non-Hermitian matrices occur as the final parameter estimation step in several blind source separation problems such as ACMA, JADE, PARAFAC, and SOBI. Previous approaches have been Jacobi iteration schemes and alternating projections. Here we show how the joint diagonalization problem can be formulated as a (weighted) subspace fitting problem so that it can be solved using the efficient Gauss-Newton optimization algorithm proposed for that problem. Since a good initial point is usually available, the algorithm converges very fast
Keywords :
Hermitian matrices; array signal processing; convergence of numerical methods; iterative methods; optimisation; parameter estimation; ACMA; Gauss-Newton optimization algorithm; Hermitian matrices; JADE; PARAFAC; SOBI; blind source separation problems; fast convergence; iteration schemes; joint diagonalization problem; nonHermitian matrices; parameter estimation; subspace problem; Additive noise; Blind source separation; Cost function; Eigenvalues and eigenfunctions; Jacobian matrices; Least squares methods; Matrix decomposition; Newton method; Recursive estimation; Source separation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP '01). 2001 IEEE International Conference on
Conference_Location :
Salt Lake City, UT
ISSN :
1520-6149
Print_ISBN :
0-7803-7041-4
Type :
conf
DOI :
10.1109/ICASSP.2001.940221
Filename :
940221
Link To Document :
بازگشت