DocumentCode :
3337062
Title :
Cluster correspondence views for enhanced analysis of SOM displays
Author :
Bernard, Jürgen ; Von Landesberger, Tatiana ; Bremm, Sebastian ; Schreck, Tobias
Author_Institution :
Interactive Graphics Syst. Group, Tech. Univ. Darmstadt, Darmstadt, Germany
fYear :
2010
fDate :
25-26 Oct. 2010
Firstpage :
217
Lastpage :
218
Abstract :
The Self-Organizing Map (SOM) algorithm is a popular and widely used cluster algorithm. Its constraint to organize clusters on a grid structure makes it very amenable to visualization. On the other hand, the grid constraint may lead to reduced cluster accuracy and reliability, compared to other clustering methods not implementing this restriction. We propose a visual cluster analysis system that allows to validate the output of the SOM algorithm by comparison with alternative clustering methods. Specifically, visual mappings overlaying alternative clustering results onto the SOM are proposed. We apply our system on an example data set, and outline main analytical use cases.
Keywords :
data analysis; data mining; pattern clustering; self-organising feature maps; SOM displays; grid structure; self-organizing map; visual cluster analysis system; visual mappings; Algorithm design and analysis; Clustering algorithms; Clustering methods; Data visualization; Image color analysis; Trajectory; Visualization; H.4 [Information Systems]: Information Systems Applications; I.3.6 [Computing Methodologies]: Methodology and Techniques;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Visual Analytics Science and Technology (VAST), 2010 IEEE Symposium on
Conference_Location :
Salt Lake City, UT
Print_ISBN :
978-1-4244-9488-0
Electronic_ISBN :
978-1-4244-9487-3
Type :
conf
DOI :
10.1109/VAST.2010.5651676
Filename :
5651676
Link To Document :
بازگشت