Title :
Backstepping based Nonlinear Flight Control Strategy for 6 DOF Aerial Robot
Author :
Mian, Ashfaq Ahmad ; Ahmad, Mian Ilyas ; Wang, Daobo
Author_Institution :
Nanjing Univ. of Aeronaut. & Astronaut., Nanjing
Abstract :
In this paper a nonlinear model of a 6-DOF quad rotor aerial robot is derived, based on Newton-Euler formalism, and backstepping based PID flight control strategy is implemented for motion control of the derived model. The derivation comprises determining equations of motion of quad rotor aerial robot in three dimensions and seeking to approximate actuation forces through modeling of the aerodynamic coefficients and electric motor dynamics. The derived MIMO model, constituted of translational and rotational subsystem, is dynamically unstable. A nonlinear control strategy that includes integrator backstepping control for the translational subsystem and backstepping based PID control for the rotational subsystem is implemented for the quad rotor aerial robot. The stability of the control design is ensured by Lyapunov global stability theorem. The performance of the nonlinear control algorithm is evaluated using nonlinear simulation. Results from nonlinear simulation validate effectiveness of the designed control strategy for quad rotor aerial robot near quasi stationary (hover or near hover) flight.
Keywords :
Lyapunov methods; MIMO systems; aerodynamics; aerospace control; aerospace robotics; control system synthesis; motion control; robot dynamics; robust control; three-term control; 6 DOF aerial robot; Lyapunov global stability theorem; MIMO model; Newton-Euler formalism; PID flight control; aerodynamic coefficients; backstepping control; control design; electric motor dynamics; motion control; nonlinear flight control strategy; quad rotor aerial robot; stability control; Aerodynamics; Aerospace control; Backstepping; Electric motors; Motion control; Nonlinear equations; Robots; Rotors; Stability; Three-term control; Backstepping based PID control; Integrator backstepping; MIMO Model; Newton-Euler formalism; Quad rotor aerial robot;
Conference_Titel :
Smart Manufacturing Application, 2008. ICSMA 2008. International Conference on
Conference_Location :
Gyeonggi-do
Print_ISBN :
978-89-950038-8-6
Electronic_ISBN :
978-89-962150-0-4
DOI :
10.1109/ICSMA.2008.4505630