DocumentCode :
3340785
Title :
Sparse recovery in myocardial blood flow quantification via PET
Author :
Engbers, Ralf ; Benning, Martin ; Heins, Pia ; Schafers, Klaus ; Burger, Martin
Author_Institution :
Inst. for Comput. & Appl. Math., Univ. of Munster, Munster, Germany
fYear :
2011
fDate :
23-29 Oct. 2011
Firstpage :
3742
Lastpage :
3744
Abstract :
In this paper we are considering the problem of myocardial blood flow quantification via dynamic positron emission tomography (PET). In dynamic PET the measured data is divided into small temporal bins leading to a low signal-to-noise ratio (SNR) in each temporal bin. Thus, the physiological parameters have to be estimated using bad quality reconstructions. We want to overcome this problem by incorporating apriori information in the form of a linear physiological model, represented by basis functions. To identify the parameters in question we combine the reconstruction process with sparsity regularization.
Keywords :
cardiology; haemodynamics; image reconstruction; medical image processing; physiological models; positron emission tomography; PET; a-priori information; bad quality reconstructions; dynamic positron emission tomography; linear physiological model; myocardial blood flow quantification; physiological parameters; signal-noise ratio; small temporal bins; sparse recovery; sparsity regularization; Blood; Computed tomography;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE
Conference_Location :
Valencia
ISSN :
1082-3654
Print_ISBN :
978-1-4673-0118-3
Type :
conf
DOI :
10.1109/NSSMIC.2011.6153707
Filename :
6153707
Link To Document :
بازگشت