Title :
Instrument parameter estimation in bayesian convex deconvolution
Author :
Orieux, F. ; Rodet, T. ; Giovannelli, J.-F.
Author_Institution :
Lab. des Signaux et Syst., Univ. Paris-Sud 11, Gif-sur-Yvette, France
Abstract :
This paper proposes a Bayesian approach for estimation of instrument parameter in convex image deconvolution. The parameters of the instrument response (PSF) are jointly estimated with the image leading to a myopic deconvolution approach. In addition a special convex field allowing efficient hyperparameter estimation is used. The solution is based on a global a posteriori law for unknown parameters and object. The estimate is chosen in the sense of the posterior mean, numerically calculated by means of a Monte-Carlo Markov chain algorithm. The computation is efficient with a partial implementation in Fourier space. Simulation results are provided to assess the effectiveness of the proposed approach.
Keywords :
Bayes methods; Fourier analysis; Markov processes; Monte Carlo methods; deconvolution; image processing; parameter estimation; Bayesian approach; Bayesian convex deconvolution; Fourier space; Monte-Carlo Markov chain algorithm; PSF; a posteriori law; convex image deconvolution; hyperparameter estimation; instrument parameter estimation; instrument response; myopic deconvolution approach; posterior mean; Bayesian methods; Deconvolution; Estimation; Instruments; Markov processes; Noise; Pixel; Instrument parameter estimation; Monte-Carlo Markov chain; convex deconvolution; myopic deconvolution; semi-blind deconvolution;
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
DOI :
10.1109/ICIP.2010.5651917