DocumentCode :
3342659
Title :
Fault detection and classification of analog circuits by means of fuzzy logic-based techniques
Author :
Torralba, A. ; Chávez, J. ; Franquelo, L.G.
Author_Institution :
Dept. de Ingenieria Electron., Seville Univ., Spain
Volume :
3
fYear :
1995
fDate :
30 Apr-3 May 1995
Firstpage :
1828
Abstract :
This paper presents a fuzzy system for the fault detection and classification in analog circuits. This fuzzy system uses the results of a set of Monte-Carlo runs of the circuit, under nominal and faulty condition, to adjust its parameters following a backpropagation technique. Experimental results obtained with two CMOS analog opamps are also presented
Keywords :
CMOS analogue integrated circuits; Monte Carlo methods; backpropagation; circuit analysis computing; fault diagnosis; fuzzy logic; fuzzy neural nets; operational amplifiers; CMOS analog opamps; Monte-Carlo runs; analog circuits; backpropagation technique; fault classification; fault detection; fuzzy logic-based techniques; Analog circuits; Backpropagation; Circuit faults; Circuit testing; Electrical fault detection; Electronic circuits; Electronic mail; Fuzzy logic; Fuzzy systems; Neurons;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1995. ISCAS '95., 1995 IEEE International Symposium on
Conference_Location :
Seattle, WA
Print_ISBN :
0-7803-2570-2
Type :
conf
DOI :
10.1109/ISCAS.1995.523770
Filename :
523770
Link To Document :
بازگشت