DocumentCode :
3346076
Title :
Undecimated haar thresholding for poisson intensity estimation
Author :
Luisier, Florian ; Blu, Thierry ; Unser, Michael
Author_Institution :
Biomed. Imaging Group, Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland
fYear :
2010
fDate :
26-29 Sept. 2010
Firstpage :
1697
Lastpage :
1700
Abstract :
We propose a novel algorithm for denoising Poisson-corrupted images, that performs a signal-adaptive thresholding of the undecimated Haar wavelet coefficients. A Poisson´s unbiased MSE estimate is devised and adapted to arbitrary transform-domain pointwise processing. This prior-free quadratic measure of quality is then used to globally optimize a linearly parameterized subband-adaptive thresholding, which accounts for the signal-dependent noise variance. We demonstrate the qualitative and computational competitiveness of the resulting denoising algorithm through comprehensive comparisons with some state-of-the-art multiscale techniques specifically designed for Poisson intensity estimation. We also show promising denoising results obtained on low-count fluorescence microscopy images.
Keywords :
Haar transforms; image denoising; mean square error methods; stochastic processes; Haar wavelet coefficients; MSE estimation; Poisson intensity estimation; image denoising; low-count fluorescence microscopy images; mean square error estimation; prior-free quadratic measure; signal-adaptive thresholding; signal-dependent noise variance; subband-adaptive thresholding; transform-domain point- wise processing; undecimated Haar thresholding; AWGN; Approximation methods; Estimation; Noise reduction; PSNR; Wavelet transforms; Haar wavelet; Image denoising; MSE estimation; Poisson noise; fluorescence microscopy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing (ICIP), 2010 17th IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1522-4880
Print_ISBN :
978-1-4244-7992-4
Electronic_ISBN :
1522-4880
Type :
conf
DOI :
10.1109/ICIP.2010.5652184
Filename :
5652184
Link To Document :
بازگشت