Title :
Evolutionary analysis of non-stationary signals
Author :
Khan, Hamayun ; Chaparro, Luis E.
Author_Institution :
Dept. of Electr. Eng., Pittsburgh Univ., PA, USA
Abstract :
The Wold-Cramer representation of non-stationary signals made possible the development of the evolutionary spectral methods pioneered by Priestley (1981) and Melard (1989). We show that by considering such a model a practical non-stationary signal analysis is achievable. Estimating the kernel of the Wold-Cramer representation allows us to develop time-varying estimators for the mean, the autocorrelation and the spectrum of the signal. As a specific application of the evolutionary analysis, we consider the analysis and implementation of the Wiener filtering of nonstationary processes. Applying the orthogonality principle generalized normal equations can be obtained and then realized using a maximum-entropy spectral estimator for the Wold-Cramer kernels. An examples illustrating the filtering is given.
Keywords :
Wiener filters; correlation methods; filtering theory; maximum likelihood estimation; parameter estimation; signal representation; spectral analysis; Wiener filtering; Wold-Cramer kernels; Wold-Cramer representation; autocorrelation; evolutionary analysis; evolutionary spectral methods; filtering; generalized normal equations; kernel estimation; maximum-entropy spectral estimator; mean; nonstationary processes; nonstationary signal analysis; orthogonality principle; signal spectrum; time-varying estimators; Autocorrelation; Equations; Filtering; Kernel; Mean square error methods; Signal analysis; Signal processing; Time frequency analysis; Time varying systems; Wiener filter;
Conference_Titel :
Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on
Conference_Location :
Pacific Grove, CA, USA
Print_ISBN :
0-7803-5148-7
DOI :
10.1109/ACSSC.1998.750871