• DocumentCode
    334785
  • Title

    A gradient-based target tracking method using cumulants

  • Author

    Liu, Tsung-Hsien ; Mendel, Jerry M.

  • Author_Institution
    Signal & Image Process. Inst., Univ. of Southern California, Los Angeles, CA, USA
  • Volume
    1
  • fYear
    1998
  • fDate
    1-4 Nov. 1998
  • Firstpage
    702
  • Abstract
    We present a gradient-based cumulant method to track the signal subspace in an array signal processing scenario. This method is combined with a non-adaptive singular value decomposition (SVD) and a non-adaptive eigenvalue decomposition (EVD) to yield an adaptive virtual-ESPRIT algorithm (VESPA) for target tracking. The resulting least-mean-squared VESPA (LMS-VESPA) is of complexity O(M/sup 2/P). In addition to hardware saving, we demonstrate through simulations that, when the signals are closely spaced, block-adaptive ESPRIT suffers even from slight colored noise, and that when the SNR is poor whether the signals are close or not, LMS-VESPA is still robust to such noise.
  • Keywords
    adaptive signal processing; array signal processing; direction-of-arrival estimation; gradient methods; higher order statistics; least mean squares methods; noise; singular value decomposition; target tracking; DOA; LMS-VESPA; SNR; SVD; VESPA; adaptive virtual-ESPRIT algorithm; array signal processing; block-adaptive ESPRIT; colored noise; complexity; cumulants; gradient-based target tracking method; least-mean-squared VESPA; nonadaptive eigenvalue decomposition; nonadaptive singular value decomposition; signal subspace; simulations; Adaptive signal processing; Array signal processing; Colored noise; Eigenvalues and eigenfunctions; Hardware; Signal processing; Signal processing algorithms; Signal to noise ratio; Singular value decomposition; Target tracking;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Signals, Systems & Computers, 1998. Conference Record of the Thirty-Second Asilomar Conference on
  • Conference_Location
    Pacific Grove, CA, USA
  • ISSN
    1058-6393
  • Print_ISBN
    0-7803-5148-7
  • Type

    conf

  • DOI
    10.1109/ACSSC.1998.750953
  • Filename
    750953