DocumentCode :
3350962
Title :
Maximum A-Posteriori Estimation in Linear Models With a Gaussian Model Matrix
Author :
Nevat, Ido ; Wiesel, Ami ; Yuan, Jinhong ; Eldar, Yonina C.
Author_Institution :
Univ. of New South Wales, Sydney
fYear :
2007
fDate :
14-16 March 2007
Firstpage :
63
Lastpage :
67
Abstract :
We consider the Bayesian inference of a random Gaussian vector in a linear model with a Gaussian model matrix. We derive the maximum a-posteriori (MAP) estimator for this model and show that it can be found using a simple line search over a unimodal function that can be efficiently evaluated. Next, we discuss the application of this estimator in the context of near-optimal detection of near-Gaussian-digitally modulated signals and demonstrate through simulations that the MAP estimator outperforms the standard linear MMSE estimator in terms of mean square error (MSE) and bit error rate (BER).
Keywords :
Bayes methods; Gaussian channels; digital communication; error statistics; least mean squares methods; maximum likelihood estimation; modulation; signal detection; Bayesian inference; Gaussian model matrix; MAP estimator; bit error rate; linear MMSE estimator; linear models; maximum a-posteriori estimation; mean square error; near-Gaussian-digitally modulated signals; optimal detection; random Gaussian vector; Ambient intelligence; Forward error correction; Gaussian noise; Maximum a posteriori estimation; Maximum likelihood detection; Maximum likelihood estimation; Signal generators; Space technology; Symmetric matrices; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Sciences and Systems, 2007. CISS '07. 41st Annual Conference on
Conference_Location :
Baltimore, MD
Print_ISBN :
1-4244-1063-3
Electronic_ISBN :
1-4244-1037-1
Type :
conf
DOI :
10.1109/CISS.2007.4298274
Filename :
4298274
Link To Document :
بازگشت