DocumentCode :
335184
Title :
Adaptive learning control of robot manipulators in task space
Author :
Jiang, Y.A. ; Clements, D.J. ; Hesketh, T. ; Park, J.S.
Author_Institution :
Sch. of Electr. Eng., New South Wales Univ., Kensington, NSW, Australia
Volume :
1
fYear :
1994
fDate :
29 June-1 July 1994
Firstpage :
207
Abstract :
Adaptive sliding mode control is considered, together with an iterative learning control scheme for tracking control of robot manipulators in Cartesian space coordinates. It is shown that the algorithm is globally convergent in the presence of external disturbances and modelling uncertainties. Owing to the robustness of the algorithm, a large gain for learning control can be used to achieve fast convergence of tracking errors. Moreover, the control scheme is rather simple and the inverse of the Jacobian matrix is not required.
Keywords :
adaptive control; convergence of numerical methods; iterative methods; learning systems; manipulators; robust control; variable structure systems; Cartesian space coordinates; adaptive learning control; adaptive sliding mode control; external disturbances; fast convergence; global convergence; iterative learning control; large gain; modelling uncertainties; robot manipulators; robustness; task space; tracking control; tracking errors; Adaptive control; Iterative algorithms; Manipulators; Orbital robotics; Programmable control; Robot control; Robot kinematics; Robust control; Sliding mode control; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 1994
Print_ISBN :
0-7803-1783-1
Type :
conf
DOI :
10.1109/ACC.1994.751725
Filename :
751725
Link To Document :
بازگشت