• DocumentCode
    335290
  • Title

    Optimizing eigenvalues of symmetric definite pencils

  • Author

    Haeberly, Jean-Pierre A. ; Overton, Michael L.

  • Author_Institution
    Dept. of Math., Fordham Univ., New York, NY, USA
  • Volume
    1
  • fYear
    1994
  • fDate
    29 June-1 July 1994
  • Firstpage
    836
  • Abstract
    We consider the following quasiconvex optimization problem: minimize the largest eigenvalue of a symmetric definite matrix pencil depending on parameters. A new form of optimality conditions is given, emphasizing a complementarity condition on primal and dual matrices. Newton´s method is then applied to these conditions to give a new quadratically convergent interior-point method which works well in practice. The algorithm is closely related to primal-dual interior-point methods for semidefinite programming.
  • Keywords
    Newton method; duality (mathematics); eigenvalues and eigenfunctions; matrix algebra; optimisation; Newton method; complementarity condition; dual matrix; eigenvalue minimisation; interior-point method; optimality conditions; primal matrix; quasiconvex optimisation; semidefinite programming; symmetric definite pencil; Computer science; Constraint optimization; Eigenvalues and eigenfunctions; Functional programming; Linear matrix inequalities; Linear programming; Mathematics; Newton method; Strain control; Symmetric matrices;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1994
  • Print_ISBN
    0-7803-1783-1
  • Type

    conf

  • DOI
    10.1109/ACC.1994.751860
  • Filename
    751860