DocumentCode :
3353813
Title :
Evalutation of Performance of KNN, MLP and RBF Classifiers in Emotion Detection Problem
Author :
Polat, Gökhan ; Altun, Halis
Author_Institution :
Elektrik -Elektronik Muhendisi, Nigde Univ. Yuksek Lisans Ogrencisi, Nigde, Turkey
fYear :
2007
fDate :
11-13 June 2007
Firstpage :
1
Lastpage :
4
Abstract :
Emotion detection has gained increasing attention and become an active research area. The problem is solved with improved feature set with different number of feature groups, by employing different classifiers in order to achieve satisfactory recognition rate. In this study, speech related features are employed to evaluate the performance of different classifiers in emotion detection problem.
Keywords :
emotion recognition; pattern classification; KNN classifier; MLP classifier; RBF classifiers; emotion detection; Hidden Markov models; Linear discriminant analysis; Linear predictive coding; Mel frequency cepstral coefficient; Performance evaluation; Speech analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th
Conference_Location :
Eskisehir
Print_ISBN :
1-4244-0719-2
Electronic_ISBN :
1-4244-0720-6
Type :
conf
DOI :
10.1109/SIU.2007.4298581
Filename :
4298581
Link To Document :
بازگشت