DocumentCode :
3353827
Title :
Determining Efficiency of Speech Feature Groups in Emotion Detection
Author :
Polat, G. ; Altun, Hallis
Author_Institution :
Nigde Univ. Yuksek Lisans Ogrencisi, Nigde
fYear :
2007
fDate :
11-13 June 2007
Firstpage :
1
Lastpage :
4
Abstract :
Features, extract from speech parameter are frequently used in emotion detection problem. Prosodic, MFCC, LPC and band energy feature groups are commonly used in literature to detect emotion in speech. The aim of the study is to examine the efficiency of these features groups in emotion detection problem using a SVM classifier.
Keywords :
emotion recognition; feature extraction; speech recognition; support vector machines; SVM classifier; emotion detection; speech feature groups; speech parameter; Feature extraction; Linear predictive coding; Mel frequency cepstral coefficient; Speech; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing and Communications Applications, 2007. SIU 2007. IEEE 15th
Conference_Location :
Eskisehir
Print_ISBN :
1-4244-0719-2
Electronic_ISBN :
1-4244-0720-6
Type :
conf
DOI :
10.1109/SIU.2007.4298582
Filename :
4298582
Link To Document :
بازگشت