• DocumentCode
    335392
  • Title

    Adaptive parameter estimation in a 2-D structural acoustic model with piezoceramic actuator

  • Author

    Banks, H.T. ; Demetriou, M.A. ; Smith, R.C.

  • Author_Institution
    Centre for Res. in Sci. Comput., North Carolina State Univ., Raleigh, NC, USA
  • Volume
    2
  • fYear
    1994
  • fDate
    29 June-1 July 1994
  • Firstpage
    1454
  • Abstract
    The adaptive estimation of physical parameters in a structural acoustic system involving a 2D cavity with flexible boundary is considered. The flexible boundary (beam) is excited via piezoceramic patches which yield an unbounded input operator. A combined state and parameter estimator is constructed as an initial value problem with unbounded input operator for an infinite dimensional evolution equation in variational form. State convergence is established via a Lyapunov-like estimate. The notion of persistence of excitation required to guarantee parameter convergence is discussed and a finite dimensional approximation theory is outlined.
  • Keywords
    Lyapunov methods; approximation theory; convergence of numerical methods; flexible structures; initial value problems; parameter estimation; piezoelectric actuators; state estimation; structural acoustics; 2D cavity; 2D structural acoustic model; Lyapunov-like estimate; adaptive parameter estimation; finite dimensional approximation theory; flexible beam; flexible boundary; initial value problem; parameter convergence; piezoceramic actuator; state convergence; state estimator; Acoustic beams; Acoustic noise; Actuators; Concrete; Convergence; Equations; NASA; Parameter estimation; Piezoelectric materials; State estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 1994
  • Print_ISBN
    0-7803-1783-1
  • Type

    conf

  • DOI
    10.1109/ACC.1994.752305
  • Filename
    752305