DocumentCode :
3354060
Title :
Applying cellular automata to hyperspectral edge detection
Author :
Lee, Matthew A. ; Bruce, Lori Mann
Author_Institution :
Mississippi State Univ., Starkville, MS, USA
fYear :
2010
fDate :
25-30 July 2010
Firstpage :
2202
Lastpage :
2205
Abstract :
This paper proposes the concept of using cellular automata (CAs) and adapted edge detection algorithms for edge detection in hyperspectral images. The approach consists of an edge detection CA and a post-processing CA (that implements morphological operations for denoising the edges). The CA approach is generalized in that it operates on any three-dimensional data cube, allowing for hyperspectral dimensionality reduction as a pre-processing stage if preferred. The CA approach is designed, implemented, and applied to airborne hyperspectral imagery for qualitative assessment and applied to synthetic imagery, where the precise ground truth of edges are known, for quantitative assessment. Results show the CA method to be very promising for both unsupervised and supervised edge detection in hyperspectral imagery.
Keywords :
cellular automata; edge detection; image denoising; airborne hyperspectral imagery; cellular automata; edge denoising; hyperspectral dimensionality reduction; hyperspectral edge detection; hyperspectral images; qualitative assessment; synthetic imagery; three-dimensional data cube; unsupervised edge detection; Automata; Hyperspectral imaging; Image edge detection; Image segmentation; Measurement; Pixel; Cellular Automata; Edge Detection; Hyperspectral;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location :
Honolulu, HI
ISSN :
2153-6996
Print_ISBN :
978-1-4244-9565-8
Electronic_ISBN :
2153-6996
Type :
conf
DOI :
10.1109/IGARSS.2010.5652717
Filename :
5652717
Link To Document :
بازگشت