DocumentCode :
3354491
Title :
Discovering regular groups of mobile objects using incremental clustering
Author :
Elnekave, Sigal ; Last, Mark ; Maimon, Oded ; Ben-Shimol, Yehuda ; Einsiedler, Hans ; Friedman, Menahem ; Siebert, Matthias
fYear :
2008
fDate :
27-27 March 2008
Firstpage :
197
Lastpage :
205
Abstract :
As technology advances, detailed data on the position of moving objects, such as humans and vehicles is available. In order to discover groups of mobile objects that usually move in similar ways we propose an incremental clustering algorithm that clusters mobile objects according to similarity of their movement patterns. The proposed clustering algorithm uses a new, "data-amount-based" similarity measure between mobile trajectories. The clustering algorithm is evaluated on two spatio-temporal datasets using clustering validity measures.
Keywords :
data mining; mobile computing; pattern clustering; data amount-based similarity measure; data mining; incremental clustering; mobile object; regular group discovery; spatio-temporal datasets; Clustering algorithms; Data mining; Extraterrestrial measurements; Global Positioning System; Humans; Mobile communication; Navigation; Partitioning algorithms; Time measurement; Vehicles; Clustering; Mobile objects; Spatio-temporal data mining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Positioning, Navigation and Communication, 2008. WPNC 2008. 5th Workshop on
Conference_Location :
Hannover
Print_ISBN :
978-1-4244-1798-8
Electronic_ISBN :
978-1-4244-1799-5
Type :
conf
DOI :
10.1109/WPNC.2008.4510375
Filename :
4510375
Link To Document :
بازگشت