Title :
Modeling network traffic with multifractal behavior
Author :
Nogueira, António ; Salvador, Paulo ; Valadas, Rui
Author_Institution :
Inst. of Telecommun., Aveiro Univ., Portugal
fDate :
23 Feb.-1 March 2003
Abstract :
The traffic engineering of IP networks requires accurate characterization and modeling of network traffic due to the growing diversity of multimedia applications and the need to efficiently support QoS differentiation in the network. In recent years, several types of traffic behavior that can have significant impact on network performance were discovered: long-range dependence, self-similarity, and more recently, multifractality. The extent to which a traffic model needs to incorporate these characteristics is still the subject of much research. In this work, we address the modeling of network traffic multifractality by evaluating the performance of three models, which cover a wide range of traffic types, as mathematical descriptors of measured traffic traces showing multifractal behavior. We resort to traffic traces measured both at the University of Aveiro and at a Portuguese ISP. For the traffic models, we selected a Markov modulated Poisson process as an example of Markovian model, the well known fractional Gaussian noise model as an example of a self-similar process and the conservative cascade model as an example of a multifractal model. These models are evaluated comparing the density function, the autocovariance and the loss rate queuing behavior of the measured traces and of traces synthesized from the fitted models. Results show that the fractional Gaussian noise model is not able to perform a good fitting of the first and second order statistics as well as the loss rate queuing behavior, while the Markovian and the conservative cascade models both give similar and very good results. The cascade model is intrinsically multifractal, thus the obtained results are not surprising. The good performance of the Markovian model can be attributed to the parameter fitting procedure, that aggregates distinct sub-processes operating in different time scales, and matches closely both the first and second order statistics of the traffic. The poor performance of the self-similar model can be explained mainly by its lack of parameters.
Keywords :
Gaussian noise; Internet; Markov processes; fractals; quality of service; queueing theory; telecommunication traffic; IP network; Internet protocol; LRD; Markovian model; Poisson process; QoS; autocovariance; conservative cascade model; density function; first order statistics; fractional Gaussian noise model; long range dependence; loss rate queuing behavior; multifractal behavior; multimedia application; multiscaling; network traffic modeling; quality of service; second order statistics; self-similarity; traffic engineering; traffic traces measurement; Density functional theory; Density measurement; Fractals; Gaussian noise; IP networks; Loss measurement; Mathematical model; Statistics; Telecommunication traffic; Traffic control;
Conference_Titel :
Telecommunications, 2003. ICT 2003. 10th International Conference on
Print_ISBN :
0-7803-7661-7
DOI :
10.1109/ICTEL.2003.1191586