DocumentCode :
3356343
Title :
Weighted rank aggregation via relaxed integer programming
Author :
Raisali, Fardad ; Hassanzadeh, Farzad Farnoud ; Milenkovic, Olgica
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Illinois, Champaign, IL, USA
fYear :
2013
fDate :
7-12 July 2013
Firstpage :
2765
Lastpage :
2769
Abstract :
We propose a new family of algorithms for bounding/approximating the optimal solution of rank aggregation problems based on weighted Kendall distances. The algorithms represent linear programming relaxations of integer programs that involve variables reflecting partial orders of three or more candidates. Our simulation results indicate that the linear programs give near-optimal performance for a number of important voting parameters, and outperform methods based on PageRank and Weighted Bipartite Matching.
Keywords :
data mining; integer programming; linear programming; PageRank; linear programming relaxation; relaxed integer programming; weighted Kendall distance; weighted bipartite matching; weighted rank aggregation; Aggregates; Approximation algorithms; Approximation methods; IP networks; Information theory; Linear programming; Tin;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on
Conference_Location :
Istanbul
ISSN :
2157-8095
Type :
conf
DOI :
10.1109/ISIT.2013.6620729
Filename :
6620729
Link To Document :
بازگشت