• DocumentCode
    337026
  • Title

    Recent results on classification of finite dimensional maximal rank estimation algebras with state space dimension up to 5

  • Author

    Yau, Stephen S T ; Hu, Guo-Qing

  • Author_Institution
    UIC, MSCS, Chicago, IL, USA
  • Volume
    2
  • fYear
    1998
  • fDate
    16-18 Dec 1998
  • Firstpage
    1311
  • Abstract
    The idea of using estimation algebras to construct finite dimensional nonlinear filters was first proposed independently by Brockett (1981) and Mitter (1979). Brockett proposed to classify all finite dimensional estimation algebras. An affirmative solution to Brockett´s problem will allow one to construct all possible finite dimensional recursive filters from the Lie algebraic point of view. In this paper we classify all maximal rank finite dimensional estimation algebras with state space dimension five
  • Keywords
    Lie algebras; estimation theory; filtering theory; nonlinear filters; recursive filters; state-space methods; Brockett problem; Lie algebra; estimation algebras; finite dimensional nonlinear filters; recursive filters; state space dimension; Algebra; Electronic mail; Equations; Filtering; Mathematics; Nonlinear dynamical systems; Nonlinear filters; Recursive estimation; State estimation; State-space methods;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
  • Conference_Location
    Tampa, FL
  • ISSN
    0191-2216
  • Print_ISBN
    0-7803-4394-8
  • Type

    conf

  • DOI
    10.1109/CDC.1998.758462
  • Filename
    758462