Title :
Fast statistical timing analysis of latch-controlled circuits for arbitrary clock periods
Author :
Li, Bing ; Chen, Ning ; Schlichtmann, Ulf
Author_Institution :
Inst. for Electron. Design Autom., Tech. Univ. Muenchen, Munich, Germany
Abstract :
Latch-controlled circuits have a remarkable advantage in timing performance as process variations become more relevant for circuit design. Existing methods of statistical timing analysis for such circuits, however, still need improvement in runtime and their results should be extended to provide yield information for any given clock period. In this paper, we propose a method combining a simplified iteration and a graph transformation algorithm. The result of this method is in a parametric form so that the yield for any given clock period can easily be evaluated. The graph transformation algorithm handles the constraints from nonpositive loops effectively, completely avoiding the heuristics used in other existing methods. Therefore the accuracy of the timing analysis is well maintained. Additionally, the proposed method is much faster than other existing methods. Especially for large circuits it offers about 100 times performance improvement in timing verification.
Keywords :
clocks; flip-flops; integrated circuit design; integrated circuit yield; iterative methods; statistical analysis; timing circuits; arbitrary clock periods; circuit design; graph transformation; latch-controlled circuits; simplified iteration; statistical timing analysis; timing verification; yield information; Algorithm design and analysis; Clocks; Delay; Latches; Random variables; Time factors;
Conference_Titel :
Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on
Conference_Location :
San Jose, CA
Print_ISBN :
978-1-4244-8193-4
DOI :
10.1109/ICCAD.2010.5653800