DocumentCode :
3371673
Title :
A comparison of audiovisual content recommender systems performance: Collaborative vs. semantic approaches
Author :
Sotelo, Rafael ; Juayek, Marcos ; Scuoteguazza, Alejandra
Author_Institution :
Fac. de Ing., Univ. de Montevideo, Montevideo, Uruguay
fYear :
2013
fDate :
5-7 June 2013
Firstpage :
1
Lastpage :
5
Abstract :
In this paper we compare the efficiency of the semantic approach with the traditional collaborative filtering in recommender systems applied to the field of audiovisual contents. We use actual data from MovieLens database to train the recommenders´ algorithms and to compare results. An ontology for the audiovisual content was developed importing data from IMDB. For the sake of reproducibility the novel LensKit platform has been utilized.
Keywords :
audio-visual systems; collaborative filtering; digital television; ontologies (artificial intelligence); recommender systems; telecommunication computing; LensKit platform; MovieLens database; audiovisual content recommender system performance; audiovisual contents; collaborative approach; ontology; recommender algorithm; semantic approach; traditional collaborative filtering; Collaboration; Motion pictures; Ontologies; Recommender systems; Semantics; TV; Collaborative filtering; Ontology; Recommender systems performance; Semantic filtering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Broadband Multimedia Systems and Broadcasting (BMSB), 2013 IEEE International Symposium on
Conference_Location :
London
ISSN :
2155-5044
Type :
conf
DOI :
10.1109/BMSB.2013.6621791
Filename :
6621791
Link To Document :
بازگشت