Title :
Combining Monte Carlo simulation with heuristics for solving the Inventory Routing Problem with stochastic demands
Author :
Caceres-Cruz, Jose ; Juan, Angel A. ; Bektas, Tolga ; Grasman, Scott E. ; Faulin, Javier
Author_Institution :
IN3-Comput. Sci. Dept., Open Univ. of Catalonia, Barcelona, Spain
Abstract :
In this paper, we introduce a simulation-based algorithm for solving the single-period Inventory Routing Problem (IRP) with stochastic demands. Our approach, which combines simulation with heuristics, considers different potential inventory policies for each customer, computes their associated inventory costs according to the expected demand in the period, and then estimates the marginal routing savings associated with each customer-policy entity. That way, for each customer it is possible to rank each inventory policy by estimating its total costs, i.e., both inventory and routing costs. Finally, a multi-start process is used to iteratively construct a set of promising solutions for the IRP. At each iteration of this multi-start process, a new set of policies is selected by performing an asymmetric randomization on the list of policy ranks. Some numerical experiments illustrate the potential of our approach.
Keywords :
Monte Carlo methods; costing; inventory management; stochastic processes; IRP; Monte Carlo simulation; associated inventory costs; asymmetric randomization; customer-policy entity; expected demand; inventory policies; marginal routing savings estimation; multistart process; simulation-based algorithm; single-period inventory routing problem; stochastic demands; total cost estimation; Educational institutions; Heuristic algorithms; Modeling; Monte Carlo methods; Routing; Stochastic processes; Vehicles;
Conference_Titel :
Simulation Conference (WSC), Proceedings of the 2012 Winter
Conference_Location :
Berlin
Print_ISBN :
978-1-4673-4779-2
Electronic_ISBN :
0891-7736
DOI :
10.1109/WSC.2012.6464999