Title :
Eigen decomposition parameter based forest mapping using Radarsat-2 PolSAR data
Author :
Li, Yang ; Hong, Wen ; Cao, Fang ; Chen, Erxue ; Goodenough, David G. ; Chen, Hao ; Wang, Peng ; Richardson, Ashlin
Author_Institution :
Nat. Key Lab. of Microwave Imaging Technol., Beijing, China
Abstract :
In this paper, a set of polarimetric eigenvalue and eigenvector based parameters, e.g. entropy and anisotropy, are investigated for forest application. The correlation terms of the eigenvectors, μ1 and μ2, are found to be better for forest mapping in both summer and winter using Radarsat-2 quad-polarimetric space borne SAR data. These are used to automatically identify forest class pixels from the volume scattering category of a Freeman-Durden Wishart unsupervised segmentation map. The algorithm scheme was developed and implemented using fully polarimetric Radarsat-2 SAR (PolSAR) data acquired in July and October and the validity was evaluated using the ground reference data created from SPOT5 K-clustering classification map.
Keywords :
eigenvalues and eigenfunctions; spaceborne radar; synthetic aperture radar; Freeman-Durden Wishart unsupervised segmentation map; Radarsat-2 PolSAR data; Radarsat-2 quad-polarimetric space borne SAR data; SPOT5 K-clustering classification map; anisotropy; eigen decomposition parameter based forest mapping; eigenvector based parameters; entropy; polarimetric eigenvalue; Classification algorithms; Eigenvalues and eigenfunctions; Fires; Pixel; Radar imaging; Scattering; Forest mapping; Polarimetric; Radarsat-2; classification; eigenvalue;
Conference_Titel :
Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International
Conference_Location :
Honolulu, HI
Print_ISBN :
978-1-4244-9565-8
Electronic_ISBN :
2153-6996
DOI :
10.1109/IGARSS.2010.5653912