DocumentCode
3373463
Title
On computing multi-dimensional extreme eigen and singular subspaces
Author
Hasan, Mohammed A.
Author_Institution
Dept. of Electr. & Comput. Eng., Univ. of Minnesota Duluth, Duluth, MN, USA
fYear
2010
fDate
May 30 2010-June 2 2010
Firstpage
2570
Lastpage
2573
Abstract
The problem, of finding extreme eigenvalues and eigenvectors of a real symmetric positive definite matrix can be viewed as a smooth optimization problem on a smooth manifold. We present a cost function approach for computing higher dimensional sub-spaces corresponding to smallest and largest eigenvalues simultaneously. This approach is then generalized to develop dynamical system for computing the singular value spread of any real matrix.
Keywords
eigenvalues and eigenfunctions; optimisation; singular value decomposition; cost function approach; dynamical system; eigenvalues; eigenvectors; multidimensional extreme eigen subspaces; real symmetric positive definite matrix; singular subspaces; smooth optimization problem; Cost function; Eigenvalues and eigenfunctions; Equations; Iterative algorithms; Iterative methods; Manifolds; Neural networks; Principal component analysis; Symmetric matrices; Eigenvalue spread; Gradient dynamical systems; Joint PCA-MCA; Joint PSA-MSA; Oja´s Rule; Stiefel manifold;
fLanguage
English
Publisher
ieee
Conference_Titel
Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on
Conference_Location
Paris
Print_ISBN
978-1-4244-5308-5
Electronic_ISBN
978-1-4244-5309-2
Type
conf
DOI
10.1109/ISCAS.2010.5537100
Filename
5537100
Link To Document