• DocumentCode
    3373463
  • Title

    On computing multi-dimensional extreme eigen and singular subspaces

  • Author

    Hasan, Mohammed A.

  • Author_Institution
    Dept. of Electr. & Comput. Eng., Univ. of Minnesota Duluth, Duluth, MN, USA
  • fYear
    2010
  • fDate
    May 30 2010-June 2 2010
  • Firstpage
    2570
  • Lastpage
    2573
  • Abstract
    The problem, of finding extreme eigenvalues and eigenvectors of a real symmetric positive definite matrix can be viewed as a smooth optimization problem on a smooth manifold. We present a cost function approach for computing higher dimensional sub-spaces corresponding to smallest and largest eigenvalues simultaneously. This approach is then generalized to develop dynamical system for computing the singular value spread of any real matrix.
  • Keywords
    eigenvalues and eigenfunctions; optimisation; singular value decomposition; cost function approach; dynamical system; eigenvalues; eigenvectors; multidimensional extreme eigen subspaces; real symmetric positive definite matrix; singular subspaces; smooth optimization problem; Cost function; Eigenvalues and eigenfunctions; Equations; Iterative algorithms; Iterative methods; Manifolds; Neural networks; Principal component analysis; Symmetric matrices; Eigenvalue spread; Gradient dynamical systems; Joint PCA-MCA; Joint PSA-MSA; Oja´s Rule; Stiefel manifold;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on
  • Conference_Location
    Paris
  • Print_ISBN
    978-1-4244-5308-5
  • Electronic_ISBN
    978-1-4244-5309-2
  • Type

    conf

  • DOI
    10.1109/ISCAS.2010.5537100
  • Filename
    5537100