DocumentCode
337391
Title
Minimum entropy algorithms for source separation
Author
Wu, Hsiao-Chun ; Principe, Jose C.
Author_Institution
Lab. of Comput. Neuro-Eng., Florida Univ., Gainesville, FL, USA
fYear
1998
fDate
9-12 Aug 1998
Firstpage
242
Lastpage
245
Abstract
The minimum entropy or maximum likelihood estimation can be utilized in blind source separation problem. Based on the local generalized Gaussian probability density model, a set of general anti-Hebbian rules can be derived. This set of adaptation rules give promising results when we test the real recordings
Keywords
Gaussian processes; Hebbian learning; maximum likelihood estimation; minimum entropy methods; signal detection; adaptation rules; blind source separation problem; general anti-Hebbian rules; local generalized Gaussian probability density model; maximum likelihood estimation; minimum entropy algorithms; Blind source separation; Entropy; Equations; Finite impulse response filter; Gaussian distribution; Maximum likelihood estimation; Noise reduction; Probability density function; Source separation; Testing;
fLanguage
English
Publisher
ieee
Conference_Titel
Circuits and Systems, 1998. Proceedings. 1998 Midwest Symposium on
Conference_Location
Notre Dame, IN
Print_ISBN
0-8186-8914-5
Type
conf
DOI
10.1109/MWSCAS.1998.759478
Filename
759478
Link To Document