DocumentCode :
3376501
Title :
A nonparametric approach for noisy point data preprocessing
Author :
Xi, Yongjian ; Duan, Ye ; Zhao, Hongkai
Author_Institution :
Univ. of Missouri, Columbia, MO, USA
fYear :
2009
fDate :
19-21 Aug. 2009
Firstpage :
217
Lastpage :
222
Abstract :
3D point data acquired from laser scan or stereo vision can be quite noisy. A preprocessing step is often needed before a surface reconstruction algorithm can be applied. In this paper, we propose a nonparametric approach for noisy point data preprocessing. In particular, we proposed an anisotropic kernel based nonparametric density estimation method for outlier removal, and a hill-climbing line search approach for projecting data points onto the real surface boundary. Our approach is simple, robust and efficient. We demonstrate our method on both real and synthetic point datasets.
Keywords :
data acquisition; data visualisation; image reconstruction; stereo image processing; anisotropic kernel; hill-climbing line search approach; noisy point data preprocessing; nonparametric density estimation method; outlier removal; surface reconstruction algorithm; Anisotropic magnetoresistance; Data preprocessing; Kernel; Noise shaping; Robustness; Shape; Stereo vision; Surface reconstruction; Tensile stress; Voting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Aided Design and Computer Graphics, 2009. CAD/Graphics '09. 11th IEEE International Conference on
Conference_Location :
Huangshan
Print_ISBN :
978-1-4244-3699-6
Electronic_ISBN :
978-1-4244-3701-6
Type :
conf
DOI :
10.1109/CADCG.2009.5246900
Filename :
5246900
Link To Document :
بازگشت