DocumentCode :
337700
Title :
Hankel singular values and vectors of a class of infinite dimensional systems with totally ordered inner functions
Author :
Ohta, Yoshito
Author_Institution :
Dept. of Comput.-Controlled Mech. Syst., Osaka Univ., Japan
Volume :
1
fYear :
1998
fDate :
1998
Firstpage :
610
Abstract :
This paper considers the Hankel singular value problem for a class of infinite dimensional systems with totally ordered inner functions. An exact Hamiltonian determinant formula for singular values is derived if the inner functions generate a totally ordered set of finite cardinality. A formula for singular vectors is derived in state-space representation of finite-dimensional part of the system
Keywords :
Hankel matrices; multidimensional systems; singular value decomposition; state-space methods; system theory; Hankel singular value problem; Hankel singular vectors; exact Hamiltonian determinant formula; finite cardinality; infinite dimensional systems; state-space representation; totally ordered inner functions; Control systems; Delay systems; Fourier transforms; Frequency; Integral equations; Kernel; MIMO; Optimal control; Polynomials; Robust control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
Conference_Location :
Tampa, FL
ISSN :
0191-2216
Print_ISBN :
0-7803-4394-8
Type :
conf
DOI :
10.1109/CDC.1998.760746
Filename :
760746
Link To Document :
بازگشت