DocumentCode :
337702
Title :
Least squares identification using μ-Markov parameterizations
Author :
Van Pelt, Tobin H. ; Bernstein, Dennis S.
Author_Institution :
Dept. of Aerosp. Eng., Michigan Univ., MI, USA
Volume :
1
fYear :
1998
fDate :
1998
Firstpage :
618
Abstract :
In this paper we introduce μ-Markov parameterizations for use in least squares estimation. These parameterizations explicitly contain the system impulse response parameters, or Markov parameters, and, under very general noise models, the least squares estimates of the Markov parameters are consistent regardless of model order choice when the input is white noise. A numerical example is given to illustrate this result
Keywords :
Markov processes; least squares approximations; parameter estimation; μ-Markov parameterizations; general noise models; least squares estimation; least squares identification; model order choice; system impulse response parameters; white noise; Convergence; Finite impulse response filter; Least squares approximation; Least squares methods; Parameter estimation; Signal generators; Stochastic systems; Transfer functions; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
Conference_Location :
Tampa, FL
ISSN :
0191-2216
Print_ISBN :
0-7803-4394-8
Type :
conf
DOI :
10.1109/CDC.1998.760748
Filename :
760748
Link To Document :
بازگشت