DocumentCode :
337711
Title :
Design of a static neural element in an iterative learning control scheme
Author :
Hideg, Laszlo
Author_Institution :
Dept. of Electr. Eng., Lawrence Technol. Univ., Southfield, MI, USA
Volume :
1
fYear :
1998
fDate :
1998
Firstpage :
690
Abstract :
Most often, employing a neural net in a control system implies an adaption scheme. Neural nets inherently are non-model based, requiring the adaption. This paper proposes a design process which selects values of a single layer neural net suitable to replace a control law element
Keywords :
convergence; iterative methods; learning (artificial intelligence); neurocontrollers; stability; convergence; iterative learning control; neural net; stability; static neural element; Control systems; Convergence; Delay effects; Error correction; Frequency domain analysis; Neural networks; PD control; Process design; Stability; Time factors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
Conference_Location :
Tampa, FL
ISSN :
0191-2216
Print_ISBN :
0-7803-4394-8
Type :
conf
DOI :
10.1109/CDC.1998.760764
Filename :
760764
Link To Document :
بازگشت