DocumentCode :
337715
Title :
Maximum likelihood identification of Wiener models with a linear regression initialization
Author :
Hagenblad, Anna ; Ljung, Lennart
Author_Institution :
Autom. Control, Linkoping Univ., Sweden
Volume :
1
fYear :
1998
fDate :
1998
Firstpage :
712
Abstract :
Many parametric identification routines suffer from the problem with local minima. This is also true for the prediction-error approach to identifying Wiener models, i.e., linear models with a static nonlinearity at the output. We here suggest a linear regression initialization that secures a consistent and efficient estimate, when used in conjunction with a Gauss-Newton minimization scheme
Keywords :
linear systems; maximum likelihood estimation; minimisation; recursive estimation; Gauss-Newton minimization; Wiener models; linear dynamic systems; linear regression; linear regression initialization; maximum likelihood estimation; parametric identification; static nonlinearity; Automatic control; Finite impulse response filter; Least squares methods; Linear regression; Maximum likelihood estimation; Newton method; Noise measurement; Nonlinear dynamical systems; Predictive models; Recursive estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1998. Proceedings of the 37th IEEE Conference on
Conference_Location :
Tampa, FL
ISSN :
0191-2216
Print_ISBN :
0-7803-4394-8
Type :
conf
DOI :
10.1109/CDC.1998.760768
Filename :
760768
Link To Document :
بازگشت