DocumentCode :
3379452
Title :
Monotone circuits for weighted threshold functions
Author :
Beimel, Amos ; Weinreb, Enav
Author_Institution :
Dept. of Comput. Sci., Ben-Gurion Univ., Beer-Sheva, Israel
fYear :
2005
fDate :
11-15 June 2005
Firstpage :
67
Lastpage :
75
Abstract :
Weighted threshold functions with positive weights are a natural generalization of unweighted threshold functions. These functions are clearly monotone. However, the naive way of computing them is adding the weights of the satisfied variables and checking if the sum is greater than the threshold; this algorithm is inherently non-monotone since addition is a non-monotone function. In this work we bypass this addition step and construct a polynomial size logarithmic depth unbounded fan-in monotone circuit for every weighted threshold function, i.e., we show that weighted threshold functions are in mAC. (To the best of our knowledge, prior to our work no polynomial monotone circuits were known for weighted threshold functions). Our monotone circuits are applicable for the cryptographic tool of secret sharing schemes. Using general results for compiling monotone circuits (Yao, 1989) and monotone formulae (Benaloh and Leichter, 1990) into secret sharing schemes, we get secret sharing schemes for every weighted threshold access structure. Specifically, we get: (1) information-theoretic secret sharing schemes where the size of each share is quasi-polynomial in the number of users, and (2) computational secret sharing schemes where the size of each share is polynomial in the number of users.
Keywords :
Boolean functions; circuit complexity; cryptography; information theory; computational secret sharing; cryptographic tool; information theory; mAC; nonmonotone function; nonmonotonic algorithm; polynomial size logarithmic depth unbounded fan-in monotone circuit; quasipolynomial sharing; weighted threshold access; weighted threshold functions; Boolean functions; Circuits; Complexity theory; Computational complexity; Computer science; Cryptography; Information security; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Complexity, 2005. Proceedings. Twentieth Annual IEEE Conference on
ISSN :
1093-0159
Print_ISBN :
0-7695-2364-1
Type :
conf
DOI :
10.1109/CCC.2005.12
Filename :
1443074
Link To Document :
بازگشت