Title :
Modeling Cu migration in CdTe solar cells under device-processing and long-term stability conditions
Author :
Teeter, Glenn ; Asher, Sally
Author_Institution :
National Renewable Energy Laboratory (NREL), 1617 Cole Blvd., MS 3218, Golden, CO 80401, USA
Abstract :
An impurity migration model for systems with material interfaces is applied to Cu migration in CdTe solar cells. In the model, diffusion fluxes are calculated from the Cu chemical potential gradient. Inputs to the model include Cu diffusivities, solubilities, and segregation enthalpies in CdTe, CdS and contact materials. The model yields transient and equilibrium Cu distributions in CdTe devices during device processing and under field-deployed conditions. Preliminary results for Cu migration in CdTe photovoltaic devices using available diffusivity and solubility data from the literature show that Cu segregates in the CdS, a phenomenon that is commonly observed in devices after back-contact processing and/or stress conditions.
Keywords :
Chemicals; Degradation; Impurities; Laboratories; Photovoltaic cells; Photovoltaic systems; Renewable energy resources; Solar power generation; Stability; Stress;
Conference_Titel :
Photovoltaic Specialists Conference, 2008. PVSC '08. 33rd IEEE
Conference_Location :
San Diego, CA, USA
Print_ISBN :
978-1-4244-1640-0
Electronic_ISBN :
0160-8371
DOI :
10.1109/PVSC.2008.4922894