DocumentCode :
3388304
Title :
Estimating the Polarization Degree of Polarimetric Images using Maximum Likelihood Methods
Author :
Chatelain, Florent ; Tourneret, Jean-Yves ; Roche, Muriel
Author_Institution :
IRIT-ENSEEIHT-TéSA, 2 rue Charles Camichel, BP 7122, 31071 Toulouse cedex 7, France. florent.chatelain@enseeiht.fr
fYear :
2007
fDate :
26-29 Aug. 2007
Firstpage :
64
Lastpage :
68
Abstract :
This paper shows that the joint distribution of polarimetric intensity images is a multivariate gamma distribution in the case of coherent illumination with fully developed speckle. The parameters of this gamma distribution can be estimated according to the maximum likelihood (ML) principle. Different estimators depending on the number of available polarimetric images are studied. These estimators provide different ways of estimating the degree of polarization (DoP) associated to each pixel of the image. A performance comparison with estimators based on methods of moments shows the interest of the ML method for estimating the DoP of polarimetric images.
Keywords :
Biomedical imaging; Constitution; Covariance matrix; Lighting; Maximum likelihood estimation; Moment methods; Optical polarization; Parameter estimation; Pixel; Speckle;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing, 2007. SSP '07. IEEE/SP 14th Workshop on
Conference_Location :
Madison, WI, USA
Print_ISBN :
978-1-4244-1198-6
Electronic_ISBN :
978-1-4244-1198-6
Type :
conf
DOI :
10.1109/SSP.2007.4301219
Filename :
4301219
Link To Document :
بازگشت