DocumentCode :
339149
Title :
Mandarin phonetic recognition using mixture hidden Markov models with time duration function
Author :
Bao, Lixin ; Toyama, Jun ; Shimbo, Masaru
Author_Institution :
Div. of Syst. & Inf. Eng., Hokkaido Univ., Sapporo, Japan
fYear :
1998
fDate :
1998
Firstpage :
621
Abstract :
This paper proposes mixture hidden Markov models (HMM) with a time duration function to solve the recognition of Mandarin Chinese diphthongs and several words that resemble diphthongs. We propose an autoregression model to represent the dynamical relationships of observation symbols with time variance. The model can improve the weaknesses of standard HMM and nonstationary HMM
Keywords :
autoregressive processes; hidden Markov models; speech recognition; HMM; Mandarin Chinese; autoregression model; diphthongs; mixture hidden Markov models; observation symbols; phonetic recognition; time duration function; time variance; Decoding; Hidden Markov models; Loudspeakers; Natural languages; Polynomials; Speech analysis; Speech recognition; Statistical analysis; Systems engineering and theory; Vocabulary;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Proceedings, 1998. ICSP '98. 1998 Fourth International Conference on
Conference_Location :
Beijing
Print_ISBN :
0-7803-4325-5
Type :
conf
DOI :
10.1109/ICOSP.1998.770288
Filename :
770288
Link To Document :
بازگشت